Zinc(II) ortho-hydroxyphenylhydrazo-β-diketonate complexes and their catalytic ability towards diastereoselective nitroaldol (Henry) reaction.
نویسندگان
چکیده
The zinc(II) complexes with ortho-hydroxy substituted arylhydrazo-β-diketonates [Zn(2)(CH(3)OH)(2)(μ-L(1))(2)] (5), [Zn{(CH(3))(2)SO}(H(2)O)(L(2))] (6), [Zn(2)(H(2)O)(2)(μ-L(3))(2)] (7) and [Zn(H(2)O)(2)(L(4))]·H(2)O (8) were synthesized by reaction of a zinc(II) salt with the appropriate hydrazo-β-diketone, HO-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) (H(2)L(1), 1), HO-2-O(2)N-4-C(6)H(3)-NHN=C{C(=O)CH(3)}(2) (H(2)L(2), 2), HO-2-C(6)H(4)-NHN=CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(3), 3) or HO-2-O(2)N-4-C(6)H(3)-NHN=[CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(4), 4). They were fully characterized, namely by X-ray diffraction analysis that disclosed the formation of extensive H-bonds leading to 1D chains (5 and 6), 2D layers (7) or 3D networks (8). The thermodynamic parameters of the Zn(II) reaction with H(2)L(2) in solution, as well as of the thermal decomposition of 1-8 were determined. Complexes 5-8 act as diastereoselective catalysts for the nitroaldol (Henry) reaction. The threo/erythro diastereoselectivity of the β-nitroalkanol products ranges from 8:1 to 1:10 with typical yields of 80-99%, depending on the catalyst and substrate used.
منابع مشابه
Journal of Organometallic Chemistry Inorganic–organic hybrid double sulfates as catalysts of the diastereoselective nitroaldol reaction
Graphical Abstract New inorganic–organic hybrid materials effectively and diastereoselectively catalyze the C–C bond formation upon nitroaldol (Henry) reaction. Highlights ► New hybrid materials were easily prepared from zinc(II) salt, sulfuric acid and amines. ► Full structural characterization of the compounds was performed. ► The synthesized compounds act as effective catalysts in the nitroa...
متن کاملZinc metal-organic frameworks: efficient catalysts for the diastereoselective Henry reaction and transesterification.
Three new compounds bearing different flexible side functional groups, viz. 2-acetamidoterephthalic acid (H2L1), 2-propionamidoterephthalic acid (H2L2) and 2-benzamidoterephthalic acid (H2L3), were synthesized and their coordination reactions with zinc(II) were studied. X-ray crystallography showed the formation of novel metal organic frameworks with different dimensionalities, where the side f...
متن کاملLanthanide derivatives comprising arylhydrazones of β-diketones: cooperative E/Z isomerization and catalytic activity in nitroaldol reaction.
Two complexes [KLa(HL(1))2{(CH3)2NCHO}2(H2O)3] (1) and [Sm(H2O)9](E-H2L(2))3·2H2O (2) were synthesized by the reaction of lanthanum(III) and samarium(III) nitrates with potassium 3-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)-2-hydroxy-5-nitrobenzenesulfonate (KH2L(1)) and potassium (E,Z)-5-chloro-3-(2-(1,3-dioxo-1-phenylbutan-2-ylidene)hydrazinyl)-2-hydroxybenzenesulfonate (KH2L(2)), respectively...
متن کاملSynthesis and Metal Ion Uptake Studies of Silica Gel-Immobilized Schiff Base Derivatives and Catalytic Behaviors of their Cu(II) Complexes
New silica supported Schiff base ligands were prepared by the condensation reaction of 4,6-diacetylresorcinol with silica-gel derivatives, which modified with 3-aminopropyltriethoxysilane and N-(2-aminoethyl) -3-aminopropyltrimethoxysilane. Metal ion uptake capacities of these compounds were studied towards of selected transition metal (Cd(II), Cu(II), Co(II), Mn(II), Pb(II) and Ni(II)) cations...
متن کاملSynthesis of chiral tertiary trifluoromethyl alcohols by asymmetric nitroaldol reaction with a Cu(II)-bisoxazolidine catalyst.
A highly enantioselective and diastereoselective copper(II)-bisoxazolidine catalyzed nitroaldol reaction with aliphatic and aromatic trifluoromethyl ketones is described.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 19 شماره
صفحات -
تاریخ انتشار 2011